Department of Electrical & Electronic Engineering
Imperial College London

EE2 Circuits & Systems

Lab 5 — DAC and Function Generator

Learning Outcomes

Lab 5 teaches you:

e how to convert a digital value to a PWM signal,

e use a lowpass filter to turn the PWM signal into an analogue voltage,
e how to use SPl interface to send serial digital data to a DAC device,

e how to generate a triangular signal,

e how to control the frequency of the triangular signal.

The Lab requires you to use the Sallen-Key LP filter and the class-D audio amplifier that you
built in Labs 1 and 2. You will also be using a DAC chip, the MCP4921, the datasheet of which
is on the course webpage.

Preparation

Before you start task 1, take out the prototype shield included in the DE10-Lite box and stick
the small breadboard onto the prototype PCB as shown below if required. Without the DE10-
Lite connected to power, carefully plug the prototype shield to the two rows of Arduino
Headers. Make sure that the pins and sockets are aligned on the RIGHTHAND side as shown
below. Plugin 3 or 4 header pins to the GND sockets as shown. They will be useful for you to
clip the scope probe ground croc-clips later. Double check that you have plug the prototype
shield into the header correctly. The pins and sockets should be flush on the right side.

I 7§ ht ! :

’d PWM_OUT =78 ____] Sl - 5V sockets to power
) PO o A analogue board
q | Insert the
prototype
shield onto the

DE10 sockets

ype

neld v.5

mini
breadboard

o
o
-

£
(’J.}

Leave one socket
free to connect later

Add3or4
header pin for
GND clips of
scope probes

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 1

Task 1: Digital to Analogue Conversion using PWM

Before you start Task 1, use New Project Wizard, create a new project lab5taskl in the
lab5/task1 folder.

NOTE: Make sure that the pin assignment file pin_assignment.txt you downloaded and
various components you have used are put in your mylib folder. This file contains all the pin
assignment relevant to Lab 4, 5 and 6.

Open the file lab5taskl.qsf immediately after the project is created, and change the device
type from 10MO08 to 10M50, and speed grade from 8 to 7 as shown here. (It is a shortcut,
saving you having to change the Device Type inside Quartus.)

set_global_assignment -nane DEVICE 10008)AF484(8) ——> 10MSODAF484CTG

Then go to end of the .gsf file and insert pin_assignment.txt. Save and close lab5task1.qsf.
You are now ready to proceed. As usual, the solution for Lab 5 Task 1 is available as a .sof file
from the course webpage.

Step 1: Creating the pwm.sv module

Shown above is the analogue PWM circuit you created in Lab 2, and a block diagram showing
its digital equivalent of the pwm.sv module you are about to create for this task. The principle
of the digital PWM is covered during Lecture 8. Essentially the analogue integrator is replaced
by a RAMP generator circuit. Note that the output is a digital ramp — a series of numbers that
goes up monotonically until it reaches the maximum value, and then it goes back down to
zero. This is effective a counter!

it Tri
\\ T Schmitt Trigger

comparator
always_ff @ (posedge clk)
Triangular signal if (load == 1'bl) d <= data_in;
— Analogue nitial — ' e
) initial count = {WIDTH{1'b@}};
Analogue Vin —| Comparator Ew
PWM +
Triangular signal always_ff @ (posedge clk) begin
if (count max
count WIDTH{1'b@}};
Digital
ck RAMP I PWM count <= count + 1'bl;
>generator L
~ Digital |__PWM_ouT if (count >= d
> Comparator (PIN_ABS) pwm_out <=
. Data +
data_in —— N
load register pwm_out <=
03 —_— P

The analogue comparator is replaced with a digital comparator. The analogue input in Lab 2
is now replaced by a digital value data_in, which is stored internally in the data register
whenever load is asserted (high).

module pwm # (parameter WIDTH = 10) (
The SystemVerilog specification for the digital PWM is e R clk, .
shown above. The interface specification for pwm.sv is st Lt [L e data_in,
define here. input logic load,
input 1 c [WIDTH-1:0 max,
Create the pwm.sv module by adding all the other output logic pwm_out

declarations required.

[WIDTH-1:0]
[WIDTH-1:0]

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 2

Step 2: Test pwm.sv

Create the top-level module lab5taskl.sv that implements the circuit shown below:

10°d999
max
clktick
MAX10_CLK1_50 ——»| =+ = > load |
- 1090 pwm [(PINABS)
clk
SWI[9:0] i $ data_in
bin2bcd_16
7
BCDO 7 hexto7seg . HEXO0
SW[9:0] BCD1 hexto7seg HEX1
> X 4 7
BCD2 % hexto7seg HEX2
7
BCD3 i hexto7seg | HEX3
7
BCD4 [—4——] _hexto7seg f—/—— HEX4

The clktick module is used to provide a load pulse lasting for 1 clock cycle (20ns) with a period
of 20us. This effective determine the PWM sample frequency.

Check that the PWM circuit is working by measuring the PWM_OUT signal with a scope on
pin_AB5, which is brought out on the Arduino Header pin as shown on page 1.

What is the range of data_in that can be converted? Why?
Step 3: Turn the PWM_OUT signal to an analogue voltage

You built and tested a Sallen-Key lowpass filter in Lab 2 Task 4 on the analogue breadboard.
The filter has a corner frequency of around 2.7kHz. You should resurrect this filter circuit and
connect its input to the PWM_OUT signal as shown.

c22 3.3n
{—

+5v
18k 18k

Cronour [IR BRI
A

c23) MCP6002
3.3n -

[T

The prototype shield has headers that provide 5V and GND for your analogue board. Use two
wires to bring the 5V and GND to the analogue breadboard as shown below.

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 3

LP filter

PWM_OUT

P
PO

Measure the analogue voltage at the output of the LP filter with the scope or the multimeter
for different value of SW. You should explore the full range of values by checking the follow
SWI9:0] setting: 10’h3FF, 10’h200, 10’h100, 10’h80, 10’h40 etc. Why are these the correct

values to explore?

What do you expect the relationship between Vpwm voltage and the SW[9:0] value (which you
can read off the 7-segment displays) to be? Do your measurements agree with the prediction.

What is the range of input values that the PWM would convert correctly and why?

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25)

Task 2: Digital to Analogue Conversion using the MCP4921 DAC device

Step 1: Connect the MCP4921 to DE10
Before we can design our interface circuit on the FPGA to the DAC device, we need to first
wire it up to the DE10-Lite FPGA board. Shown below is a wiring layout:

h!|p://uuu.lox78c\a.net/rroke/pshield
(o]0 Tjeen et

T
5
a

. 9 aparggol

: 3.3V
- DAC_SDI AB20 |
= DAC_SCK Y19
aw a g DAC_CS AAl9 l
- e TO DE10 o U
u_w - - . VOD i L] - E VOUT
o = 2 DAC_CS [CYl-] RSy § TN
= - -
=t Y g cck 3 & 8|Vaer
- - 4 ! | 1 —
rr DAC_sDI [t SILoAC
- e -

SV
PWM_DUT ABS

Note the following:

1. Thechip orientation is chosen to make wiring the signals to the header sockets as easy
as possible. Pin 2 to 4 of MCP4921 is aligned to the FPGA signal sockets.

2. Check that you have connected the 3.3V and GND pins correctly before plugging in
the USB cable. Wrong connection of power might damage your chip permanently.

Step 2: Understanding the Datasheet

Go to the course webpage and download the datasheet for the MCP4921 DAC and the file
spi2dac.sv, which is a SystemVerilog module that implements the Serial Peripheral Interface
(SPI) circuit to communicate with the DAC.

Explore outside scheduled lab period the datasheet for the MCP4921 by considering:

e the purpose of each pin on the DAC (Section 3.0, page 17 of datasheet);

e how information is sent to the DAC through the serial data input (SDI) pin (Section 5.0,
page 23-24);

e how to configure the DAC'’s internal function (page 25);

e DAC's timing specifications and timing diagram (pages 4 and 7).

There is no need for you to know how exactly the DAC works internally. However, you need
to have sufficient appreciation of the serial interface to conduct this part of the experiment.
Furthermore, don’t worry if you don’t fully understand the SystemVerilog code in spi2dac.sv.
This will be explained in a Lecture later.

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 5

Step 3: Verify and compare the DAC with PWM

To verify that the DAC works properly, create the top-level design lab5task2 that implements
the circuit shown in the following diagram. Note that this is the same as Task1 except for the
added spi2dac module and the connection to MCP4921.

10'd999
clktick

max

tick_50k PWM_OUT

load

MAXlO_CLKl_SO—I—V +1000 pwm — (PIN ABS)

SW

> clk

[9:0] P data_in
bin2bcd_16
7
BCDO T hexto7seg HEX0
7
SW[9:0L BCD1 7% hexto7seg | . HEX1
7| X BCD2 % hexto7seg | HEX2
7
BCD3 m hexto7seg | . HEX3
BCD4 [hextolseg [~ HEX4
DAC_CS
—_—
data_in (AA19)
i _
tick 50k | Spi2dac DAC_SDI To MCP4921
= > |load (AB20)
MAX10_CLK1_50 ———— | sysclk DAC_SCK
(Y19)

The data_in value determined by the 10 switches (SW[9:0]) is loaded to the spi2dac module
at a rate of 50k samples per second as governed by the load signal. The steps for this part

are:

N

7.
8.

Create the new project lab5task2.

Download from the experiment website the file spi2dac.sv to this project folder.

Edit lab5task2.qsf file to specify the correct FPGA device and insert the
new_pin_assignment.txt at the end of the gsf file.

Modify lab5task1.sv from Task 1 to include the spi2dac.sv module.

Click: Project > Add/Remove Files in Project ..., and select all the relevant files used
here. This step is important — it allows you to select which modules to include in your
design.

When lab5task2.sv is the current file, click: Project > Set as Top-Level Entity. This is
another useful step, which defines the top module, and all those modules below this
one, for compilation. With steps 4 and 5, you can move up or down the design
hierarchy in a project for compilation.

Compile and correct errors as necessary.

Program the DE10 with the generated sof file.

Compare the converter analogue voltage produce by the DAC (pin 8 of MCP4921) and that of
the PWM (at the output of the LP filter) for different SW values. Explain any differences.

Step 4: Verify the signals on an oscilloscope

It is interesting to study the signal produced by the spi2dac.sv module. Connect the scope to
the signals DAC_CS and DAC_SDI (trigger on DAC_CS). Observe the waveforms when you
change the SW[9:0].

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 6

Task 3: Triangular wave generator

Step 1: A simple triangular wave generator

Instead of driving the DAC and the PWM with fixed digital values (as defined by SW[9:0],
create a new design where a 10-bit up-counter is providing the digital values as shown below.
(Again, you should use the solution from Task2 as the prototype and add the counter to your

design.)
10'd999
max
clktick « 50K
tick S0 PWM_OUT
MAX10_CLK1_50 > = —»| load -
- 1000 pwm (PIN ABS)
> clk
P data_in
bin2bcd_16

7
» clk BCDO [~ hexto7seg HEX0

4 7
Count[QZOL BCD1 % hexto7seg HEX1

counter X 7
i BCD2 hexto7seg HEX2

tick_50k enable /) "
BCD3 n hexto7seg . HEX3
BCD4 1 hexto7seg HEX4

DAC_CS
 ——
» data_in (AA19)
.
tick 50k | Spizdac [DACSDI gV Ig LYkl
=| load (AB20)
MAX10_CLK1_50 ————————— | sysclk —— DAC_SCK

(Y19)

Measure the output from the DAC and from the PWM. Explain what you observe.

Step 2: Task 3 Extension - A variable frequency
triangular wave generator

To change the frequency of the triangular wave, you can
replace the simple up-counter, which increments by 1
every 20us (50kHz rate), to one that increment by an
integer n, which is a 10-bit number.

Create a new module ncounter.sv according to the

SWI[9:0]
 ——

MAX10_CLK1_50 —>

diagram below. The increment value n is specified by SW[9:0].

tick_50k
o0k

n

clk
ncounter

enable

count[9:0]

Modify lab5task3 to include this new variable increment counter. Check that changing SW

value changes the frequency.

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25)

Step 3: Hear the tune

Resurrect the audio amplifier you built in Lab 1 Task 7 and connect either the low-pass filter
output or the DAC output to PAM8302A class-D audio amplifier. You should now be able to
hear the triangular signal as you vary the frequency.

5V

(Pin 8 of DAC)
Dﬁr‘l8302ﬁ
or O i ° .
\t 3
(LP filter output)
i l»l!
o =

Lab 5 — DAC and Function Generator (v3.3 — 17 Nov 25) 8

